

Mark Scheme (Results)

Summer 2013

GCE Core Mathematics 4 (6666/01R)

Edexcel and BTEC Qualifications

www.mymathscloud.com Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013 Publications Code UA035679 All the material in this publication is copyright © Pearson Education Ltd 2013

- WWW. MYMathscloud.com All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

WWW. MYMathscloud.com

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme

General Principles for Core Mathematics Marking

WWW. MYMathscloud.com (But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^2 + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to x =

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x =

2. Formula

Attempt to use correct formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c$, $q \neq 0$, leading to x = ...

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be guoted first.

Normal marking procedure is as follows:

Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required.

Question Number	Scheme		haths		
1.	$\frac{5x+3}{(2x+1)(x+1)^2} \equiv \frac{A}{(2x+1)} + \frac{B}{(x+1)} + \frac{C}{(x+1)^2}$	At least one of "A" or "C" are correct.	N. TRY TRAITS CIOU		
	(2x + 1)(x + 1) = (2x + 1) = (x + 1) = (x + 1) $A = 2, C = 2$	Breaks up their partial fraction correctly into three terms and both " A " = 2 and " C " = 2.	B1 cso		
	$5x + 3 \equiv A(x + 1)^{2} + B(2x + 1)(x + 1) + C(2x + 1)$ $x = -1 \Rightarrow -2 = -C \Rightarrow C = 2$ $x = -\frac{1}{2} \Rightarrow -\frac{5}{2} + 3 = \frac{1}{4}A \Rightarrow \frac{1}{2} = \frac{1}{4}A \Rightarrow A = 2$	Writes down <i>a correct identity</i> and attempts to find the value of either one " <i>A</i> " or " <i>B</i> " or " <i>C</i> ".	M1		
	Either $x^2: 0 = A + 2B$, constant: $3 = A + B + C$ x: 5 = 2A + 3B + 2C leading to $B = -1$	Correct value for " <i>B</i> " which is found using a correct identity and follows from their partial fraction decomposition.	A1 cso		
	So, $\frac{5x+3}{(2x+1)(x+1)^2} \equiv \frac{2}{(2x+1)} - \frac{1}{(x+1)} + \frac{2}{(x+1)^2}$		[4] 4		
	Notes for Questio				
	BE CAREFUL! Candidates will assign <i>their own</i> "A, B1: At least one of "A" or "C" are correct.	<i>B</i> and <i>C</i> " for this question.			
	B1: At least one of A of C are correct. B1: Breaks up their partial fraction correctly into three terms and both $"A" = 2$ and $"C" = 2$.				
	M1: Writes down <i>a correct identity</i> (although this can one of "A" or "B" or "C".This can be achieved by <i>either</i> substituting values comparing coefficients and solving the resulting end of the substituting the substituting end of the substituting end of the substituting the substituting end of the substituting end	into their identity <i>or</i> equations simultaneously.			
	A1: Correct value for "B" which is found using a corre decomposition.Note: If a candidate does not give partial fraction		fraction		
	• the 2 nd B1 mark can follow from a correct	identity.			
	 the final A1 mark can be awarded for a confractions at the end. 	rect "B" if a candidate goes writes out th	eir partial		
	Note: The correct partial fraction from no working sco				
	Note: A number of candidates will start this problem by	y writing out the correct identity and the	n attemnt to		

$$\begin{array}{|c|c|c|c|} \hline \textbf{Number} & \textbf{Scheme} \\ \hline \textbf{Number} & \textbf{Scheme} \\ \hline \textbf{2}, & 3^{s-1} + xy - y^2 + 5 = 0 \\ \hline \textbf{3}^{s-1} - 3^{s-1} \textbf{1} \textbf{3} \\ \hline \textbf{10} & \textbf{10} \\ \hline \textbf{11} \\ \hline \textbf{10} \hline \textbf{10} \\ \hline \textbf{10} \\ \hline \textbf{10} \\ \hline \textbf{10} \\ \hline \textbf{10} \hline \textbf{10} \\ \hline \textbf{10} \\ \hline \textbf{10} \\ \hline \textbf{10} \hline \textbf{10} \\ \hline \textbf{10} \hline \textbf{10} \hline \textbf{10} \\ \hline \textbf{10} \hline \textbf{10} \hline \textbf{10} \\ \hline \textbf{10} \hline \textbf{10$$

		m	N. Thymathscie
2.	Alternative Method: Multiplying both sides by 3		m. 24
	$3^{x-1} + xy - y^2 + 5 = 0$		Mary Petho
	$3^x + 3xy - 3y^2 + 15 = 0$		ISC/
	5 + 5xy 5y + 15 0	$3^x \rightarrow 3^x \ln 3$	B1 .049
			BI T.CON
		Differentiates implicitly to include either	M1*
Aliter	$\left\{\frac{\partial \mathbf{x}}{\partial \mathbf{x}} \times \right\} 3^{x} \ln 3 + \left(3y + 3x\frac{dy}{dx}\right) - 6y\frac{dy}{dx} = 0$	$\pm \lambda x \frac{\mathrm{d}y}{\mathrm{d}x}$ or $\pm k y \frac{\mathrm{d}y}{\mathrm{d}x}$.	M1*
Way 2	(ignore)	$3xy \rightarrow +3y + 3x \frac{dy}{dx}$	B1
		$\dots + 3y + 3x\frac{\mathrm{d}y}{\mathrm{d}x} - 6y\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	A1
	$\{(1,3) \Rightarrow\} 3^{1} \ln 3 + 3(3) + (3)(1) \frac{dy}{dx} - 6(3) \frac{dy}{dx} = 0$	Substitutes $x = 1$, $y = 3$ into their differentiated equation or expression.	dM1*
	$3\ln 3 + 9 + 3\frac{dy}{dx} - 18\frac{dy}{dx} = 0 \implies 9 + 3\ln 3 = 15\frac{dy}{dx}$ $\frac{dy}{dx} = \frac{9 + 3\ln 3}{15} \left\{ = \frac{3 + \ln 3}{5} \right\}$		dM1*
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{5} \left(\ln \mathrm{e}^3 + \ln 3 \right)$		
	$\frac{dy}{dx} = \frac{1}{5} \left(\ln e^3 + \ln 3 \right) = \frac{1}{5} \ln \left(3e^3 \right)$	Uses $3 = \ln e^3$ to achieve $\frac{dy}{dx} = \frac{1}{5} \ln (3e^3)$	A1 cso [7] 7
	NOTE: Only apply this scheme if the candidate has NOTE: For reference, $\frac{dy}{dx} = \frac{3y + 3^x \ln 3}{6y - 3x}$	as multiplied both sides of their equation by 3	· · · ·
	NOTE: If the candidate applies this method then a	$3xy \rightarrow +3y + 3x \frac{dy}{dx}$ must be seen for the 2 nd	B1 mark.

_		nn	W.M.W.M.S.C.O.U.J.COM			
Question Number	Scheme		naths the			
	$\int_0^4 \frac{1}{2 + \sqrt{(2x+1)}} \mathrm{d}x \ , \ u = 2 + \sqrt{(2x+1)}$		cloud.com			
	$\frac{\mathrm{d}u}{\mathrm{d}x} = (2x+1)^{-\frac{1}{2}} \text{or} \frac{\mathrm{d}x}{\mathrm{d}u} = u-2$ Eithe	$\operatorname{tr} \frac{\mathrm{d}u}{\mathrm{d}x} = \pm K(2x+1)^{-2} \text{or} \frac{\mathrm{d}x}{\mathrm{d}u} = \pm \lambda(u-2)$	MI			
		Either $\frac{du}{dx} = (2x+1)^{-\frac{1}{2}}$ or $\frac{dx}{du} = (u-2)$	A1			
	$\left\{ \int \frac{1}{2 + \sqrt{(2x+1)}} \mathrm{d}x \right\} = \int \frac{1}{u} (u-2) \mathrm{d}u$	Correct substitution (Ignore integral sign and du).	A1			
	$=\int \left(1-\frac{2}{u}\right) du$	An attempt to divide each term by <i>u</i> .	dM1			
	•	$\pm Au \pm B \ln u$	ddM1			
	$= u - 2\ln u$	$u-2\ln u$	A1 ft			
	$\left\{ \text{So} \left[u - 2\ln u \right]_{3}^{5} \right\} = \left(5 - 2\ln 5 \right) - \left(3 - 2\ln 3 \right)$	Applies limits of 5 and 3 in <i>u</i> or 4 and 0 in <i>x</i> in their integrated function and subtracts the correct way round.	M1			
	$= 2 + 2\ln\left(\frac{3}{5}\right)$	$2 + 2\ln\left(\frac{3}{5}\right)$	A1 cao cso			
			[8] 8			
	Notes for Question 3					
	M1: Also allow $du = \pm \lambda \frac{1}{(u-2)} dx$ or $(u-2)du$ Note: The expressions must contain du and					
	A1: Also allow $du = \frac{1}{(u-2)}dx$ or $(u-2)du = \pm \lambda dx$					
	Note: The expressions must contain du and					
	A1: $\int \frac{1}{u} (u-2) du$. (Ignore integral sign and du).					
	dM1: An attempt to divide each term by <i>u</i> . Note that this mark is dependent on the prev Note that this mark can be implied by later \mathbf{d} ddM1: $\pm Au \pm B \ln u$, $A \neq 0$, $B \neq 0$					
	Note that this mark is dependent on the two previous M1 marks being awarded. A1ft: $u - 2\ln u$ or $\pm Au \pm B\ln u$ being correctly followed through, $A \neq 0, B \neq 0$					
	M1: Applies limits of 5 and 3 in u or 4 and 0 in x way round.	-	correct			
	A1: cso and cao. $2 + 2\ln\left(\frac{3}{5}\right)$ or $2 + 2\ln(0.6)$, $\left(=A + 2\ln B$, so $A = 2, B = \frac{3}{5}\right)$					
	Note: $2 - 2\ln\left(\frac{3}{5}\right)$ is A0.					

		WWW. MY MARKS
	Notes for Question 3 Continued	Dary the
3. ctd	Note: $\int \frac{1}{u} (u-2) du = u - 2 \ln u$ with no working is 2^{nd} M1, 3^{rd} M1, 3^{rd} A1.	shscioud.
	but Note: $\int \frac{1}{u} (u-2) du = (u-2) \ln u$ with no working is 2^{nd} M0, 3^{rd} M0, 3^{rd} A0.	Com

	ww	M. Trymathscloud		
Question Number	Scheme	I Mathsci	S	
4. (a)	$\left\{\sqrt[3]{(8-9x)}\right\} = (8-9x)^{\frac{1}{3}}$ Power of $\frac{1}{3}$	M1 1040	Y.CON	
	$= \underline{(8)^{\frac{1}{3}}} \left(1 - \frac{9x}{8}\right)^{\frac{1}{3}} = \underline{2} \left(1 - \frac{9x}{8}\right)^{\frac{1}{3}} $ $\underline{(8)^{\frac{1}{3}}} \text{ or } \underline{2}$	<u>B1</u>		
	$= \left\{2\right\} \left[1 + \left(\frac{1}{3}\right)(kx) + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}(kx)^{2} + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}(kx)^{3} + \dots\right]$ see notes	M1 A1		
	$= \left\{2\right\} \left[\frac{1 + \left(\frac{1}{3}\right)\left(\frac{-9x}{8}\right) + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}\left(\frac{-9x}{8}\right)^2 + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}\left(\frac{-9x}{8}\right)^3 + \dots}{3!} \right]$			
	$= 2 \left[1 - \frac{3}{8}x; -\frac{9}{64}x^2 - \frac{45}{512}x^3 + \dots \right]$ See notes below!			
	$= 2 - \frac{3}{4}x; -\frac{9}{32}x^2 - \frac{45}{256}x^3 + \dots$	A1; A1 [6]		
(b)	$\left\{\sqrt[3]{7100} = 10\sqrt[3]{71} = 10\sqrt[3]{(8-9x)}, \right\} \text{ so } x = 0.1$ Writes down or uses $x = 0.1$	B1		
	When $x = 0.1$, $\sqrt[3]{(8-9x)} \approx 2 - \frac{3}{4}(0.1) - \frac{9}{32}(0.1)^2 - \frac{45}{256}(0.1)^3 +$ = 2 - 0.075 - 0.0028125 - 0.00017578125	M1		
	= 1.922011719			
	So, $\sqrt[3]{7100} = 19.220117919 = 19.2201 (4 dp)$ 19.2201 cso	A1 cao [3] 9		
	Notes for Question 4	,		
(a)	M1: Writes or uses $\frac{1}{3}$. This mark can be implied by a constant term of $8^{\frac{1}{3}}$ or 2.			
	<u>B1</u> : $(8)^{\frac{1}{3}}$ or <u>2</u> outside brackets or <u>2</u> as candidate's constant term in their binomial expansion.			
	M1: Expands $(+kx)^{\frac{1}{3}}$ to give any 2 terms out of 4 terms simplified or un-simplified,			
	Eg: $1 + \left(\frac{1}{3}\right)(kx)$ or $\frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(kx)^2 + \frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}(kx)^3$ or $1 + \dots + \frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(kx)^2$			
	or $\frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(kx)^2 + \frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}(kx)^3$ where $k \neq 1$ are fine for M1.			
	A1: A correct simplified or un-simplified $1 + \left(\frac{1}{3}\right)(kx) + \frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(kx)^2 + \frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}(kx)^3$			
	expansion with consistent (kx) . Note that (kx) must be consistent (on the RHS, not necessaril	ly the LHS)		
	in a candidate's expansion. Note that $k \neq 1$.	-		
	You would award B1M1A0 for $2\left[\frac{1+\left(\frac{1}{3}\right)\left(\frac{-9x}{8}\right)+\frac{(\frac{1}{3})(-\frac{2}{3})}{2!}\left(-9x\right)^2+\frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}\left(\frac{-9x}{8}\right)^3+\dots\right]$			
	because (kx) is not consistent.			

	Notes for Question 4 Continued"Incorrect bracketing"= $\{2\} \left[1 + \left(\frac{1}{3}\right) \left(\frac{-9x}{8}\right) + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!} \left(\frac{-9x^2}{8}\right) + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!} \left(\frac{-9x^3}{8}\right) + \dots \right]$ is M1A0 unless recovered.				
	Notes for Question 4 Continued				
4. (a) ctd	$\begin{bmatrix} (1)(0) \\ (1)(2)(0) \end{bmatrix} = \begin{bmatrix} (1)(2)(0) \\ (1)(2)(0) \end{bmatrix}$				
	"Incorrect bracketing" = $\{2\}$ $\left[\frac{1 + \left(\frac{1}{3}\right)\left(\frac{-9x}{8}\right) + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}\left(\frac{-9x^2}{8}\right) + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}\left(\frac{-9x^3}{8}\right) + \dots \right]$				
	is M1A0 unless recovered.				
	A1: For $2 - \frac{3}{4}x$ (simplified please) or also allow $2 - 0.75x$.				
	Allow Special Case A1A0 for either SC: $= 2\left[1 - \frac{3}{8}x;\right]$ or SC: $K\left[1 - \frac{3}{8}x - \frac{9}{64}x^2 - \frac{45}{512}x^3 +\right]$				
	(where <i>K</i> can be 1 or omitted), with each term in the [] either a simplified fraction or a decimal.				
	A1: Accept only $-\frac{9}{32}x^2 - \frac{45}{256}x^3$ or $-0.28125x^2 - 0.17578125x^3$				
	Candidates who write = $2\left[\frac{1+\left(\frac{1}{3}\right)\left(\frac{9x}{8}\right)+\frac{(\frac{1}{3})(-\frac{2}{3})}{2!}\left(\frac{9x}{8}\right)^2+\frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}\left(\frac{9x}{8}\right)^3+\dots}{3!}\right]$ where $k = \frac{9}{8}$				
	and not $-\frac{9}{8}$ and achieve $2 + \frac{3}{4}x; -\frac{9}{32}x^2 + \frac{45}{256}x^3 + \dots$ will get B1M1A1A0A0.				
	Note for final two marks:				
	$2\left[1 - \frac{3}{8}x; -\frac{9}{64}x^2 - \frac{45}{512}x^3 + \dots\right] = 2 + \frac{3}{4}x - \frac{9}{32}x^2 - \frac{45}{256}x^3 + \dots \text{ scores final A0A1.}$				
	$2\left[1 - \frac{3}{8}x; -\frac{9}{64}x^2 - \frac{45}{512}x^3 + \dots\right] = 2 - \frac{3}{4} - \frac{9}{32}x^2 - \frac{45}{256}x^3 + \dots \text{ scores final A0A1}$				
	Alternative method: Candidates can apply an alternative form of the binomial expansion.				
	$\left\{\sqrt[3]{(8-9x)}\right\} = \left(8-9x\right)^{\frac{1}{3}} = \left(8\right)^{\frac{1}{3}} + \left(\frac{1}{3}\right)\left(8\right)^{-\frac{2}{3}}\left(-9x\right) + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}\left(8\right)^{-\frac{5}{3}}\left(-9x\right)^{2} + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}\left(8\right)^{-\frac{8}{3}}\left(-9x\right)^{3}$				
	B1: $(8)^{\frac{1}{3}}$ or 2				
	M1: Any two of four (un-simplified or simplified) terms correct.				
	A1: All four (un-simplified or simplified) terms correct.				
	A1: $2 - \frac{3}{4}x$				
	A1: $-\frac{9}{32}x^2 - \frac{45}{256}x^3$				
	Note: The terms in C need to be evaluated, 1 1 1 2 1 5 1 8				
	so $\frac{1}{3}C_0(8)^{\frac{1}{3}} + \frac{1}{3}C_1(8)^{-\frac{2}{3}}(-9x) + \frac{1}{3}C_2(8)^{-\frac{5}{3}}(-9x)^2 + \frac{1}{3}C_3(8)^{-\frac{8}{3}}(-9x)^3$ without further working is B0M0A0.				
(b)	B1: Writes down or uses $x = 0.1$				
	M1: Substitutes their x, where $ x < \frac{8}{9}$ into at least two terms of their binomial expansion.				
	A1: 19.2201 cao				
	Be Careful! The binomial answer is 19.22011719				
	and the calculated $\sqrt[3]{7100}$ is 19.21997343 which is 19.2200 to 4 decimal places.				

	MMW.M.	13	Ansus Scioud.com
Question Number	Scheme	"ath	C'HS -
5. (a)	6.248046798 = 6.248 (3dp) 6.248 or awrt 6.248	B1	Clour
1	.		Y.COM
(b)	Area $\approx \frac{1}{2} \times 2$; $\times [3 + 2(7.107 + 7.218 + \text{their } 6.248) + 5.223]$	B1;	<u>M1</u>
1	= 49.369 = 49.37 (2 dp) $49.37 or awrt 49.37$	A1	
1			[3]
(c)	$\left\{ \int (4t \mathrm{e}^{-\frac{1}{3}t} + 3) \mathrm{d}t \right\} = -12t \mathrm{e}^{-\frac{1}{3}t} - \int -12\mathrm{e}^{-\frac{1}{3}t} \left\{ \mathrm{d}t \right\} \qquad \pm At \mathrm{e}^{-\frac{1}{3}t} \pm B \int \mathrm{e}^{-\frac{1}{3}t} \left\{ \mathrm{d}t \right\}, \ A \neq 0, B \neq 0$	M1	
	+3t See notes. $3 \rightarrow 3t$	A1 D1	
1	$5 \rightarrow 5l$	B1	
I	$= -12t e^{-\frac{1}{3}t} - 36e^{-\frac{1}{3}t} \{+3t\} - 12t e^{-\frac{1}{3}t} - 36e^{-\frac{1}{3}t}$	A1	
	$\left[-12t\mathrm{e}^{-\frac{1}{3}t}-36\mathrm{e}^{-\frac{1}{3}t}+3t\right]_{0}^{8}=$		
	Substitutes limits of 8 and 0 into an integrated		
1	function of the form of		
	$= \left(-12(8)e^{-\frac{1}{3}(8)} - 36e^{-\frac{1}{3}(8)} + 3(8) \right) - \left(-12(0)e^{-\frac{1}{3}(0)} - 36e^{-\frac{1}{3}(0)} + 3(0) \right) \text{either } \pm \lambda t e^{-\frac{1}{3}t} \pm \mu e^{-\frac{1}{3}t} \text{ or } $	dM1	1
1	$\pm \lambda t e^{-\frac{1}{3}t} \pm \mu e^{-\frac{1}{3}t} + Bt \text{ and}$		
1	$\pm \lambda l e^{-s} \pm \mu e^{-s} + bl$ and subtracts the correct way		
1	round.		
	$= \left(-96e^{-\frac{8}{3}} - 36e^{-\frac{8}{3}} + 24\right) - (0 - 36 + 0)$		
1	$= 60 - 132e^{-\frac{8}{3}} \qquad \qquad 60 - 132e^{-\frac{8}{3}}$	A1	
1			[6]
	$D^{100} = 122 - \frac{8}{3} = 40.27 + 1.459194420 = 1.46(2 dp) = 1.46 or ownt 1.46$	ן ת	
(d)	Difference = $\left 60 - 132e^{-\frac{8}{3}} - 49.37 \right = 1.458184439 = 1.46 (2 dp)$ 1.46 or awrt 1.46	B1	
1	1		[1]
[Notes for Question 5		11
(a)	B1: 6.248 or awrt 6.248. Look for this on the table or in the candidate's working.		
(b)	B1 : Outside brackets $\frac{1}{2} \times 2$ or 1		
1	2 M1: For structure of trapezium rule []. Allow one miscopy of their values.		
1	A1: 49.37 or anything that rounds to 49.37		
1	Note: It can be possible to award : (a) B0 (b) B1M1A1 (awrt 49.37)	-	
1	<u>Note:</u> Working must be seen to demonstrate the use of the trapezium rule. <u>Note</u> : actual area is 50.8 <u>Bracketing mistake</u> : Unless the final answer implies that the calculation has been done correctly		•
1	Award B1M0A0 for $1 + 3 + 2(7.107 + 7.218 + \text{their } 6.248) + 5.223$ (nb: answer of 50.369).	у,	

	my				
	· 72 13 · 2 13				
7 (b) at d	Notes for Question 5 Continued				
5. (b) ctd	Notes for Question 5 ContinuedMun. mun. mun. mun. mun. mun. mun. mun. m				
	B1: 2 and a divisor of 2 on all terms inside brackets.				
	M1: First and last ordinates once and two of the middle ordinates twice inside brackets ignoring the 2.A1: anything that rounds to 49.37				
(c)	M1: For $4t e^{-\frac{1}{3}t} \to \pm At e^{-\frac{1}{3}t} \pm B \int e^{-\frac{1}{3}t} \{dt\}, A \neq 0, B \neq 0$				
	A1: For $t e^{-\frac{1}{3}t} \rightarrow \left(-3t e^{-\frac{1}{3}t} - \int -3e^{-\frac{1}{3}t}\right)$ (some candidates lose the 4 and this is fine for the first A1 mark).				
	or $4t e^{-\frac{1}{3}t} \to 4\left(-3t e^{-\frac{1}{3}t} - \int -3e^{-\frac{1}{3}t}\right)$ or $-12t e^{-\frac{1}{3}t} - \int -12e^{-\frac{1}{3}t}$ or $12\left(-t e^{-\frac{1}{3}t} - \int -e^{-\frac{1}{3}t}\right)$				
	These results can be implied. They can be simplified or un-simplified. B1: $3 \rightarrow 3t$ or $3 \rightarrow 3x$ (bod).				
	Note: Award B0 for 3 integrating to $12t$ (implied), which is a common error when taking out a factor of 4.				
	Be careful some candidates will factorise out 4 and have $4\left(\dots+\frac{3}{4}\right) \rightarrow 4\left(\dots+\frac{3}{4}t\right)$				
	which would then be fine for B1.				
	Note: Allow B1 for $\int_0^8 3dt = 24$				
	A1: For correct integration of $4t e^{-\frac{1}{3}t}$ to give $-12t e^{-\frac{1}{3}t} - 36e^{-\frac{1}{3}t}$ or $4\left(-3t e^{-\frac{1}{3}t} - 9e^{-\frac{1}{3}t}\right)$ or equivalent.				
	This can be simplified or un-simplified.				
	dM1: Substitutes limits of 8 and 0 into an integrated function of the form of either $\pm \lambda t e^{-\frac{1}{3}t} \pm \mu e^{-\frac{1}{3}t}$ or				
	$\pm \lambda t e^{-\frac{1}{3}t} \pm \mu e^{-\frac{1}{3}t} + Bt$ and subtracts the correct way round.				
	Note: Evidence of a proper consideration of the limit of 0 (as detailed in the scheme) is needed for dM1. So, just subtracting zero is M0.				
	A1: An exact answer of $60 - 132e^{-\frac{8}{3}}$. A decimal answer of 50.82818444 without a correct answer is A0.				
	 Note: A decimal answer of 50.82818444 without a correct exact answer is A0. Note: If a candidate gains M1A1B1A1 and then writes down 50.8 or awrt 50.8 with no method for substituting limits of 8 and 0, then award the final M1A0. 				
	IMPORTANT: that is fine for candidates to work in terms of x rather than t in part (c). Note: The " $3t$ " is needed for B1 and the final A1 mark.				
(d)	B1: 1.46 or awrt 1.46 or -1.46 or awrt -1.46.				
	Candidates may give correct decimal answers of 1.458184439 or 1.459184439				
	Note: You can award this mark whether or not the candidate has answered part (c) correctly.				

	m	ma m
Question Number	Scheme	Nymaths
	$l: \mathbf{r} = \begin{pmatrix} a \\ b \\ 10 \end{pmatrix} + \lambda \begin{pmatrix} 6 \\ c \\ -1 \end{pmatrix}, \overrightarrow{OA} = \begin{pmatrix} 21 \\ -17 \\ 6 \end{pmatrix}, \overrightarrow{OB} = \begin{pmatrix} 25 \\ -14 \\ 18 \end{pmatrix}$	M. M. Mains I. Collid. Coll
(a)	A is on l, so $\begin{pmatrix} 21\\-17\\6 \end{pmatrix} = \begin{pmatrix} a\\b\\10 \end{pmatrix} + \lambda \begin{pmatrix} 6\\c\\-1 \end{pmatrix}$	
	$\{\mathbf{k}: 10 - \lambda = 6 \Longrightarrow\} \ \lambda = 4 \qquad \qquad \lambda = 4$	B1
	{i: $a + 6\lambda = 21 \implies$ } $a + 6(4) = 21$ Substitutes their value of λ into $a + 6\lambda = 21$	M1
	$a = -3 \qquad $	A1 cao
(b)	$\left\{ \overrightarrow{AB} \right\} = \begin{pmatrix} 25\\ -14\\ 18 \end{pmatrix} - \begin{pmatrix} 21\\ -17\\ 6 \end{pmatrix} \qquad \left\{ \overrightarrow{BA} \right\} = \begin{pmatrix} 21\\ -17\\ 6 \end{pmatrix} - \begin{pmatrix} 25\\ -14\\ 18 \end{pmatrix} \qquad Finds the difference between \overrightarrow{OA} and \overrightarrow{OB}.$ Ignore labelling.	[3] M1
	$\left\{ \overrightarrow{AB} \right\} = \begin{pmatrix} 4\\ 3\\ 12 \end{pmatrix} \qquad \left\{ \overrightarrow{BA} \right\} = \begin{pmatrix} -4\\ -3\\ -12 \end{pmatrix}$	
	$\left\{ \overrightarrow{AB} \perp l \Rightarrow \overrightarrow{AB} \bullet \mathbf{d} = 0 \right\} \Rightarrow \begin{pmatrix} 4 \\ 3 \\ 12 \end{pmatrix} \bullet \begin{pmatrix} 6 \\ c \\ -1 \end{pmatrix} = 24 + 3c - 12 = 0; \Rightarrow c = -4 $ See notes.	M1; A1 ft
	$\{\mathbf{j}: b + c\lambda = -17 \Rightarrow\} b + (-4)(4) = -17; \Rightarrow b = -1$ See notes.	ddM1; A1 cso cao [5]
(c)	$ AB = \sqrt{4^2 + 3^2 + 12^2}$ or $ AB = \sqrt{(-4)^2 + (-3)^2 + (-12)^2}$ See notes.	M1
	So, $ AB = 13$	A1 cao [2]
(d)	$\overrightarrow{OB'} \left\{ = \overrightarrow{OA} + \overrightarrow{BA} \right\} = \begin{pmatrix} 21 \\ -17 \\ 6 \end{pmatrix} + \begin{pmatrix} -4 \\ -3 \\ -12 \end{pmatrix}; = \begin{pmatrix} 17 \\ -20 \\ -6 \end{pmatrix}$ See notes for alternative methods.	[2] M1;A1 cao
		[2] 12
	Notes for Question 6	
(a)	B1: $\lambda = 4$ seen or implied. M1: Substitutes their value of λ into $a + 6\lambda = 21$	
	A1: $a = -3$.	
	Note: Award B1M1A1 if the candidate states $a = -3$ from no working.	
	<u>Alternative Method Using Simultaneous equations for part (a).</u> B1: For $60 - 6\lambda = 36$	
	M1: $60 - 6\lambda = 36$ and $a + 6\lambda = 21$ solved simultaneously to give $a =$	
	A1: $a = -3$, cao .	

	Notes for Question 6 Continued
b) d	Notes for Question 6 Continued Mun. The mathematical structure M1: Finds the difference between \overrightarrow{OA} and \overrightarrow{OB} . Ignore labelling. If no "subtraction" seen, you can award M1 for 2 out of 3 correct components of the difference.
	M1: Finds the difference between \overrightarrow{OA} and \overrightarrow{OB} . Ignore labelling.
	If no "subtraction" seen, you can award M1 for 2 out of 3 correct components of the difference.
	$- \begin{pmatrix} 6 \end{pmatrix} - \begin{pmatrix} 6 \end{pmatrix}$
	M1: Applies the formula $\overrightarrow{AB} \bullet \begin{pmatrix} 6 \\ c \\ -1 \end{pmatrix}$ or $\overrightarrow{BA} \bullet \begin{pmatrix} 6 \\ c \\ -1 \end{pmatrix}$ correctly to give a linear equation in c which is set equal
	to zero. Note: The dot product can also be with $\pm k \begin{pmatrix} 6 \\ c \\ -1 \end{pmatrix}$.
	A1ft: $c = -4$ or for finding a correct follow through <i>c</i> .
	ddM1: Substitutes their value of λ and their value of c into $b + c\lambda = -17$
	Note that this mark is dependent on the two previous method marks being awarded. A1: $b = -1$
)	M1: An attempt to apply a three term Pythagoras in order to find $ AB $,
,	so taking the square root is required here.
	A1: 13 cao Note: Don't recover work for part (b) in part (c).
)	M1: For a full <i>applied</i> method of finding the coordinates of <i>B</i> '.
	Note: You can give M1 for 2 out of 3 correct components of B' .
	A1: For either $\begin{pmatrix} 17 \\ -20 \\ -6 \end{pmatrix}$ or $17\mathbf{i} - 20\mathbf{j} - 6\mathbf{k}$ or $(17, -20, -6)$ cao.
	Helpful diagram!
	$B\begin{pmatrix} 25\\ -14\\ 18 \end{pmatrix}$
	$A\begin{bmatrix}21\\-17\end{bmatrix} \qquad \qquad \overline{BA} = \begin{bmatrix}-4\\-3\\-12\end{bmatrix}$
	(-4)
	$\overrightarrow{BA} = \begin{vmatrix} -3 \end{vmatrix}$

		Continued D t \overrightarrow{BA})			
	Notes for Question 6 Continued				
	Acceptable Methods for the Method mark in part (d	1) ····································			
Way 1	$\overrightarrow{OB'} \left\{ = \overrightarrow{OA} + \overrightarrow{BA} \right\} = \begin{pmatrix} 21\\ -17\\ 6 \end{pmatrix} + \begin{pmatrix} -4\\ -3\\ -12 \end{pmatrix} $ (using their	(\overrightarrow{BA})			
Way 2	$\overrightarrow{OB'} \left\{ = \overrightarrow{OA} - \overrightarrow{AB} \right\} = \begin{pmatrix} 21\\ -17\\ 6 \end{pmatrix} - \begin{pmatrix} 4\\ 3\\ 12 \end{pmatrix} $ (using their	\overline{AB})			
Way 3	$\overrightarrow{OB'} \left\{ = \overrightarrow{OB} + 2\overrightarrow{BA} \right\} = \begin{pmatrix} 25\\ -14\\ 18 \end{pmatrix} + 2\begin{pmatrix} -4\\ -3\\ -12 \end{pmatrix} (\text{using their } \overrightarrow{BA})$				
Way 4	$\overrightarrow{OB'} \left\{ = \overrightarrow{OB} - 2\overrightarrow{AB} \right\} = \begin{pmatrix} 25\\ -14\\ 18 \end{pmatrix} - 2 \begin{pmatrix} 4\\ 3\\ 12 \end{pmatrix} \text{(using their 2)}$				
Way 5	$\begin{pmatrix} 25\\-14\\18 \end{pmatrix} \rightarrow \begin{pmatrix} \text{Minus } 4\\\text{Minus } 3\\\text{Minus } 12 \end{pmatrix} \rightarrow \begin{pmatrix} 21\\-17\\6 \end{pmatrix} \rightarrow \begin{pmatrix} \text{Minus } 4\\\text{Minus } 3\\\text{Minus } 12 \end{pmatrix} \Biggl\{ \rightarrow \Biggl\{ \end{pmatrix}$	$ \begin{array}{c} 17\\ -20\\ -6 \end{array} \right\} , \text{ so } \overline{OA} + \text{their } \overline{BA} $			
Way 6	$\overrightarrow{OB'} \left\{ = 2\overrightarrow{OA} - \overrightarrow{OB} \right\} = 2 \begin{pmatrix} 21 \\ -17 \\ 6 \end{pmatrix} - \begin{pmatrix} 25 \\ -14 \\ 18 \end{pmatrix}$				
Way 7	$\overrightarrow{OB} = 25\mathbf{i} - 14\mathbf{j} + 18\mathbf{k}, \ \overrightarrow{OA} = 21\mathbf{i} - 17\mathbf{j} + 6\mathbf{k} \text{ and } \overrightarrow{OB'}$	$= p\mathbf{i} + q\mathbf{j} + r\mathbf{k}$,			
	$(21, -17, 6) = \left(\frac{25+p}{2}, \frac{-14+q}{2}, \frac{18+r}{2}\right)$				
	p = 21(2) - 25 = 17	M1: Writing down any two equations correctly and			
	q = -17(2) + 14 = -20	an attempt to find at least two of p , q or r .			
	r = 6(2) - 18 = -6				

		www.	Nymainscloud.com	
Question Number	Scheme		Ymathsci	
7.	$x = 27 \sec^3 t$, $y = 3 \tan t$, $0 \le t \le \frac{\pi}{3}$		TOUC CON	
(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 81 \sec^2 t \sec t \tan t$, $\frac{\mathrm{d}y}{\mathrm{d}t} = 3 \sec^2 t$	dt = dt	B1	
	ui ui	Both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are correct.	B1	
	$\frac{dy}{dx} = \frac{3\sec^2 t}{81\sec^3 t \tan t} \left\{ = \frac{1}{27\sec t \tan t} = \frac{\cos t}{27\tan t} = \frac{\cos^2 t}{27\sin t} \right\}$	Applies their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$	M1;	
	At $t = \frac{\pi}{6}$, $\frac{dy}{dx} = \frac{3\sec^2\left(\frac{\pi}{6}\right)}{81\sec^3\left(\frac{\pi}{6}\right)\tan\left(\frac{\pi}{6}\right)} = \frac{4}{72} \left\{ = \frac{3}{54} = \frac{1}{18} \right\}$	$\frac{4}{72}$	A1 cao cso	
			[4]	
(b)	$\left\{1 + \tan^2 t = \sec^2 t\right\} \Longrightarrow 1 + \left(\frac{y}{3}\right)^2 = \left(\sqrt[3]{\left(\frac{x}{27}\right)}\right)^2 = \left(\frac{x}{27}\right)^{\frac{2}{3}}$		M1	
	$\Rightarrow 1 + \frac{y^2}{9} = \frac{x^2}{9} \Rightarrow 9 + y^2 = x^2 \Rightarrow y = \left(x^2 - 9\right)^{\frac{1}{2}} *$		A1 * cso	
	$a = 27$ and $b = 216$ or $27 \le x \le 216$	a = 27 and $b = 216$	B1 [3]	
(c)	$V = \pi \int_{-27}^{125} \left(\left(x^{\frac{2}{3}} - 9 \right)^{\frac{1}{2}} \right)^2 dx \text{ or } \pi \int_{-27}^{125} \left(x^{\frac{2}{3}} - 9 \right) dx$	For $\pi \int \left(\left(x^{\frac{2}{3}} - 9 \right)^{\frac{1}{2}} \right)^2$ or $\pi \int \left(x^{\frac{2}{3}} - 9 \right)$	B1	
	$\mathbf{J}_{27} \begin{pmatrix} \mathbf{v} & \mathbf{v} \end{pmatrix} \qquad \mathbf{J}_{27} \begin{pmatrix} \mathbf{v} & \mathbf{v} \end{pmatrix}$	Ignore limits and dx . Can be implied.		
	$= \left\{\pi\right\} \left[\frac{3}{5}x^{\frac{5}{3}} - 9x\right]_{-1}^{125}$	Either $\pm Ax^{\frac{5}{3}} \pm Bx$ or $\frac{3}{5}x^{\frac{5}{3}}$ oe	M1	
	$\begin{bmatrix} 1 \\ 5 \end{bmatrix}_{27}$	$\frac{3}{5}x^{\frac{5}{3}} - 9x$ oe	A1	
	$= \left\{\pi\right\} \left(\left(\frac{3}{5}(125)^{\frac{5}{3}} - 9(125)\right) - \left(\frac{3}{5}(27)^{\frac{5}{3}} - 9(27)\right) \right)$	Substitutes limits of 125 and 27 into an integrated function and subtracts the correct way round.	dM1	
	$= \{\pi\} ((1875 - 1125) - (145.8 - 243))$	concer way found.		
	$=\frac{4236\pi}{5}$ or 847.2π	$\frac{4236\pi}{5} \text{or} 847.2\pi$	A1	
	5	5	[5] 12	
	Notes for Question	n 7		
(a)	B1: At least one of $\frac{dx}{dt}$ or $\frac{dy}{dt}$ correct. Note: that this	mark can be implied from their working.		
	B1: Both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are correct. Note: that this mark can be implied from their working.			
	M1: Applies their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$, where both $\frac{dy}{dt}$ and $\frac{dx}{dt}$ are trigonometric functions of t.			
	A1: $\frac{4}{72}$ or any equivalent correct rational answer not involving surds.			
	Allow 0.05 with the recurring symbol.			

	my 1				
	Notes for Question 7 Continued				
	Note: Please check that their $\frac{dx}{dt}$ is differentiated correctly.				
	Notes for Question 7 ContinuedNotes for Question 7 ContinuedNote: Please check that their $\frac{dx}{dt}$ is differentiated correctly.Eg. Note that $x = 27 \sec^3 t = 27(\cos t)^{-3} \Rightarrow \frac{dx}{dt} = -81(\cos t)^{-2}(-\sin t)$ is correct.				
(b)	 M1: Either: Applying a correct trigonometric identity (usually 1 + tan² t = sec² t) to give a Cartesian equation in <i>x</i> and <i>y</i> only. 				
	• Starting from the RHS and goes on to achieve $\sqrt{9\tan^2 t}$ by using a correct trigonometric identity.				
	• Starts from the LHS and goes on to achieve $\sqrt{9\sec^2 t - 9}$ by using a correct trigonometric identity.				
	A1*: For a correct proof of $y = \left(x^{\frac{2}{3}} - 9\right)^{\frac{1}{2}}$.				
(c)	Note this result is printed on the Question Paper, so no incorrect working is allowed. B1: Both $a = 27$ and $b = 216$. Note that $27 \le x \le 216$ is also fine for B1.				
(0)	B1: For a correct statement of $\pi \int \left(\left(x^{\frac{2}{3}} - 9 \right)^{\frac{1}{2}} \right)^2$ or $\pi \int \left(x^{\frac{2}{3}} - 9 \right)$. Ignore limits and dx . Can be implied.				
	M1: Either integrates to give $\pm Ax^{\frac{5}{3}} \pm Bx$, $A \neq 0$, $B \neq 0$ or integrates $x^{\frac{2}{3}}$ correctly to give $\frac{3}{5}x^{\frac{5}{3}}$ oe				
	A1: $\frac{3}{5}x^{\frac{5}{3}} - 9x$ or. $\frac{x^{\frac{5}{3}}}{\left(\frac{5}{2}\right)} - 9x$ oe.				
	dM1: Substitutes limits of 125 and 27 into an integrated function and subtracts the correct way round.Note: that this mark is dependent upon the previous method mark being awarded.				
	A1: A correct exact answer of $\frac{4236\pi}{5}$ or 847.2π .				
	Note: The π in the volume formula is only required for the B1 mark and the final A1 mark. Note: A decimal answer of 2661.557 without a correct exact answer is A0. Note: If a candidate gains the first B1M1A1 and then writes down 2661 or awrt 2662 with no method for				
(a)	substituting limits of 125 and 27, then award the final M1A0. Alternative response using the Cartesian equation in part (a)				
Way 2	$\begin{cases} y = \left(x^{\frac{2}{3}} - 9\right)^{\frac{1}{2}} \Rightarrow \begin{cases} \frac{dy}{dx} = \frac{1}{2}\left(x^{\frac{2}{3}} - 9\right)^{-\frac{1}{2}}\left(\frac{2}{3}x^{-\frac{1}{3}}\right) & \frac{dy}{dx} = \pm Kx^{-\frac{1}{3}}\left(x^{\frac{2}{3}} - 9\right)^{-\frac{1}{2}} & M1 \\ \frac{dy}{dx} = \frac{1}{2}\left(x^{\frac{2}{3}} - 9\right)^{-\frac{1}{2}}\left(\frac{2}{2}x^{-\frac{1}{3}}\right) & OP & A1 \end{cases}$				
Way 2	$ dx = 2 \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} x \\ 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \begin{pmatrix} x \\ $				
	At $t = \frac{\pi}{6}$, $x = 27 \sec^3\left(\frac{\pi}{6}\right) = 24\sqrt{3}$ Uses $t = \frac{\pi}{6}$ to find x and substitutes				
	$\Rightarrow \frac{dy}{dx} = \frac{1}{2} \left(\left(24\sqrt{3} \right)^{\frac{2}{3}} - 9 \right)^{-\frac{1}{2}} \left(\frac{2}{3} \left(24\sqrt{3} \right)^{-\frac{1}{3}} \right) \qquad \text{their } x \text{ into an expression for } \frac{dy}{dx}.$				
	So, $\Rightarrow \frac{dy}{dx} = \frac{1}{2} \left(\frac{1}{\sqrt{3}} \right) \left(\frac{1}{3\sqrt{3}} \right) = \frac{1}{18}$ $\frac{1}{18}$ A1 cao cso				
	Note: Way 2 is marked as M1 A1 dM1 A1 Note: For way 2 the second M1 mark is dependent on the first M1 being gained.				

		Image: second stateImage: second	
	Notes for Question 7 Co	ontinued Vna. Vag	
7. (b)	Alternative responses for M1A1 in part (b): STARTING	FROM THE RHS	
Way 2	$\{\text{RHS} = \} \left(x^{\frac{2}{3}} - 9\right)^{\frac{1}{2}} = \sqrt{\left(27 \sec^3 t\right)^{\frac{2}{3}} - 9} = \sqrt{9 \sec^2 t - 9} = \sqrt{9 \sec^2 t - 9}$	9 tan ² t For applying 1 + tan ² t = sec ² t oe to achieve $\sqrt{9 \tan^2 t}$	2
	$=3\tan t = y \{= LHS\}$ cso	Correct proof from $\left(x^{\frac{2}{3}}-9\right)^{\frac{1}{2}}$ to y. A1*	
	M1: Starts from the RHS and goes on to achieve $\sqrt{9\tan^2 t}$		
7. (b)	Alternative responses for M1A1 in part (b): STARTING		
Way 3	{LHS =} $y = 3\tan t = \sqrt{(9\tan^2 t)} = \sqrt{9\sec^2 t - 9}$	For applying $1 + \tan^2 t = \sec^2 t$ oe to achieve $\sqrt{9\sec^2 t - 9}$ M1	
	$=\sqrt{9\left(\frac{x}{27}\right)^{\frac{2}{3}}-9} = \sqrt{9\left(\frac{x^{\frac{2}{3}}}{9}\right)-9} = \left(x^{\frac{2}{3}}-9\right)^{\frac{1}{2}}$	cso Correct proof from y to $\left(x^{\frac{2}{3}} - 9\right)^{\frac{1}{2}}$. A1*	
	M1: Starts from the LHS and goes on to achieve $\sqrt{9 \sec^2 t}$	-9 by using a correct trigonometric identity.	
7. (c)	Alternative response for part (c) using parametric integra		
Way 2	$V = \pi \int 9 \tan^2 t \left(81 \sec^2 t \sec t \tan t \right) dt$	$\pi \int 3\tan t \left(81 \sec^2 t \sec t \tan t \right) dt B1$	
	J	Ignore limits and dx . Can be implied.	
	$= \{\pi\} \int 729 \sec^2 t \tan^2 t \sec t \tan t \mathrm{d}t$		
	$= \left\{\pi\right\} \int 729 \sec^2 t \left(\sec^2 t - 1\right) \sec t \tan t \mathrm{d}t$		
	$= \left\{\pi\right\} \int 729 \left(\sec^4 t - \sec^2 t\right) \sec t \tan t \mathrm{d}t$		
	$= \{\pi\} \int 729 \left(\sec^4 t - \sec^2 t\right) \sec t \tan t \mathrm{d}t$		
		$\pm A \sec^5 t \pm B \sec^3 t$ M1	
	$= \left\{\pi\right\} \left[729 \left(\frac{1}{5}\sec^5 t - \frac{1}{3}\sec^3 t\right)\right]$	$729\left(\frac{1}{5}\sec^5 t - \frac{1}{3}\sec^3 t\right) \text{A1}$	
	$V = \left\{\pi\right\} \left[729 \left(\frac{1}{5} \left(\frac{5}{3}\right)^5 - \frac{1}{3} \left(\frac{5}{3}\right)^3\right) - 729 \left(\frac{1}{5} 1^5 - \frac{1}{3} 1^3\right)\right] $ in	Substitutes $\sec t = \frac{5}{3}$ and $\sec t = 1$ into an antegrated function and subtracts the correct way round. dM1	
	$= 729\pi \left[\left(\frac{250}{243} \right) - \left(-\frac{2}{15} \right) \right]$		
	$=\frac{4236\pi}{5}$ or 847.2π	$\frac{4236\pi}{5}$ or 847.2π A1 [5]	
L		[8]	

		www	Thymainscioud.com	
Question Number	Scheme			
8.	$\frac{\mathrm{d}x}{\mathrm{d}t} = k(M-x)$, where <i>M</i> is a constant			
(a)	$\frac{dx}{dt}$ is the <u>rate of increase</u> of the <u>mass of waste</u> products. Any one correct explanation			
	M is the <u>total mass</u> of <u>unburned fuel</u> and <u>waste fuel</u> (or the <u>initial mass</u> of <u>unburned fuel</u>)	Both explanations are correct.	B1	
(b)	$\int \frac{1}{M-x} \mathrm{d}x = \int k \mathrm{d}t \qquad \text{or} \int \frac{1}{k(M-x)} \mathrm{d}x = \int \mathrm{d}t$		[2] B1	
	$-\ln(M-x) = kt \{+c\}$ or $-\frac{1}{k}\ln(M-x) = t \{+c\}$	See notes	M1 A1	
	$\left\{t=0, x=0 \Longrightarrow\right\} -\ln(M-0) = k(0) + c$	See notes	M1	
	$c = -\ln M \implies -\ln(M - x) = kt - \ln M$			
	then eitheror $-kt = \ln(M - x) - \ln M$ $kt = \ln M - \ln(M - x)$			
	$-kt = \ln(M - x) - \ln M \qquad \qquad kt = \ln M - \ln(M - x)$			
	$-kt = \ln\left(\frac{M-x}{M}\right)$ $kt = \ln\left(\frac{M}{M-x}\right)$			
	$e^{-kt} = \frac{M-x}{M}$ $e^{kt} = \frac{M}{M-x}$		ddM1	
	$Me^{-kt} = M - x$ $(M - x)e^{kt} = M$ $M - x = Me^{-kt}$			
	leading to $x = M - Me^{-kt}$ or $x = M(1 - e^{-kt})$ oe		A1 * cso	
	leading to $x = M - Me$ or $x = M(1 - e)$ be		[6]	
	$\left\{x = \frac{1}{2}M, t = \ln 4 \Longrightarrow\right\} \frac{1}{2}M = M(1 - e^{-k\ln 4})$			
(c)			M1	
	$\Rightarrow \frac{1}{2} = 1 - e^{-k \ln 4} \Rightarrow e^{-k \ln 4} = \frac{1}{2} \Rightarrow -k \ln 4 = -\ln 2$			
	So $k = \frac{1}{2}$		A1	
	$x = M\left(1 - \mathrm{e}^{-\frac{1}{2}\ln 9}\right)$		dM1	
	$x = \frac{2}{3}M$	$x = \frac{2}{3}M$	A1 cso	
		5	[4] 12	

	Notes for Question 8 Continued Num B1: At least one explanation correct. B1: Both explanations are correct. $\frac{dx}{dt}$ is the rate of increase of the mass of waste products. If the mass of waste products.
	Notes for Question 8 Continued
8. (a)	B1: At least one explanation correct.
	B1: Both explanations are correct. dx
	$\frac{\mathrm{d}x}{\mathrm{d}t}$ is the <u>rate of increase</u> of the <u>mass of waste</u> products.
	or the <u>rate of change</u> of the <u>mass of waste</u> products.
	<i>M</i> is the total mass of unburned fuel and waste fuel
	or the <u>initial mass of unburned fuel</u>
	or the <u>total mass</u> of <u>rocket fuel</u> and <u>waste fuel</u> or the <u>initial mass</u> of <u>rocket fuel</u>
	or the <u>initial mass</u> of <u>fuel</u>
(L)	or the total mass of waste and unburned products.
(b)	B1: Separates variables as shown. dx and dt should be in the correct positions, though this mark can be
	implied by later working. Ignore the integral signs.
	M1: Both $\pm \lambda \ln(M-x)$ or $\pm \lambda \ln(x-M)$ and $\pm \mu t$ where λ and μ are any constants.
	A1: For $-\ln(M - x) = kt$ or $-\ln(x - M) = kt$ or $-\frac{1}{k}\ln(M - x) = t$ or $-\frac{1}{k}\ln(x - M) = t$
	or $-\frac{1}{k}\ln(kM - kx) = t$ or $-\frac{1}{k}\ln(kx - kM) = t$
	Note: $+c$ is not needed for this mark.
	IMPORTANT: + c can be on either side of their equation for the 1 st A1 mark.
	M1: Substitutes $t = 0$ AND $x = 0$ in an integrated or changed equation containing c (or A or $\ln A$, etc.)
	Note that this mark can be implied by the correct value of c .
	ddM1: Uses their value of <i>c</i> which must be a ln term, and uses fully correct method to eliminate their logarithms. Note: This mark is dependent on both previous method marks being awarded.
	A1: $x = M - Me^{-kt}$ or $x = M(1 - e^{-kt})$ or $x = \frac{M(e^{kt} - 1)}{e^{kt}}$ or equivalent where x is the subject.
	Note: Please check their working as incorrect working can lead to a correct answer.
	Note: $\left\{ \frac{\mathrm{d}x}{\mathrm{d}t} = k\left(M - x\right) \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{kM - kx} \Rightarrow \right\} x = -\frac{1}{k}\ln(kM - kx) \{+c\} \text{ is B1(Implied) M1A1.}$
(c)	M1: Substitutes $x = \frac{1}{2}M$ and $t = \ln 4$ into one of their earlier equations connecting x and t.
	A1: $k = \frac{1}{2}$, which can be an un-simplified equivalent numerical value. i.e. $k = \frac{\ln 2}{\ln 4}$ is fine for A1.
	dM1: Substitutes $t = \ln 4$ and their evaluated k (which must be a numerical value) into one of their earlier
	equations connecting x and t. Note: that the 2^{nd} Method mark is dependent on the 1^{st} Method mark being awarded in part (c).
	A1: $x = \frac{2}{3}M$ cso.
	Note: Please check their working as incorrect working can lead to a correct answer.

Notes for Question 8 Continued				
<i>Aliter</i> 8. (b) Way 2	$\int \frac{1}{M-x} \mathrm{d}x = \int k \mathrm{d}t$	NWW. TRY TRAINSCIOUR B1		
	$-\ln(M-x) = kt \{+c\}$ See notes	M1 A1		
	$\ln(M-x) = -kt + c$			
	$M - x = A e^{-kt}$			
	$\{t = 0, x = 0 \Longrightarrow\} M - 0 = A e^{-k(0)}$	M1		
	$\Rightarrow M = A$ $M - x = M e^{-kt}$	ddM1		
		uuivii		
	So, $x = M - Me^{-kt}$	A1		
(b)	 So, x = M - Me^{-kt} B1M1A1: Mark as in the original scheme. M1: Substitutes t = 0 AND x = 0 in an integrated equation containing their constant of integrated be c or A. Note that this mark can be implied by the correct value of c or A. ddM1: Uses a fully correct method to eliminate their logarithms and writes down an equation their evaluated constant of integration. 	-		
(b)	 B1M1A1: Mark as in the original scheme. M1: Substitutes t = 0 AND x = 0 in an integrated equation containing their constant of integrated be c or A. M1: Uses a fully correct method to eliminate their logarithms and writes down an equation 	[6 gration which n containing		
<i>Aliter</i> 8. (b)	 B1M1A1: Mark as in the original scheme. M1: Substitutes t = 0 AND x = 0 in an integrated equation containing their constant of integrated by the correct value of c or A. ddM1: Uses a fully correct method to eliminate their logarithms and writes down an equation their evaluated constant of integration. Note: This mark is dependent on both previous method marks being awarded. Note: ln(M - x) = -kt + c leading to ln(M - x) = e^{-kt} + e^c or ln(M - x) = e^{-kt} + A weight the state of the sta	[6 gration which n containing		
<i>Aliter</i> 8. (b)	 B1M1A1: Mark as in the original scheme. M1: Substitutes t = 0 AND x = 0 in an integrated equation containing their constant of integrated be c or A. Note that this mark can be implied by the correct value of c or A. ddM1: Uses a fully correct method to eliminate their logarithms and writes down an equation their evaluated constant of integration. Note: This mark is dependent on both previous method marks being awarded. Note: ln(M - x) = -kt + c leading to ln(M - x) = e^{-kt} + e^c or ln(M - x) = e^{-kt} + A we A1: Same as the original scheme. 	[6 gration which n containing ould be dddM0.		
<i>Aliter</i> 8. (b)	B1M1A1: Mark as in the original scheme. M1: Substitutes $t = 0$ AND $x = 0$ in an integrated equation containing their constant of integrated equation containing their constant of integrated equation containing their constant of integration integrated equation containing their constant of integration integration. Note: This mark is dependent on both previous method marks being awarded. Note: $\ln(M - x) = -kt + c$ leading to $\ln(M - x) = e^{-kt} + e^c$ or $\ln(M - x) = e^{-kt} + A$ we A1: Same as the original scheme. $\int_{0}^{x} \frac{1}{M - x} dx = \int_{0}^{t} k dt$	[6 gration which n containing ould be dddM0. B1 M1 A1		
Aliter	BIMIA1: Mark as in the original scheme. M1: Substitutes $t = 0$ AND $x = 0$ in an integrated equation containing their constant of integrated by the correct value of c or A . ddM1: Uses a fully correct method to eliminate their logarithms and writes down an equation their evaluated constant of integration. Note: This mark is dependent on both previous method marks being awarded. Note: $\ln(M - x) = -kt + c$ leading to $\ln(M - x) = e^{-kt} + e^c$ or $\ln(M - x) = e^{-kt} + A$ we can be as the original scheme. $\int_{0}^{x} \frac{1}{M - x} dx = \int_{0}^{t} k dt$ $\left[-\ln(M - x)\right]_{0}^{x} = \left[kt\right]_{0}^{t}$	[6 gration which n containing ould be dddM0. B1 M1 A1		

			nn	1
	Not	es for Question 8 Continued		Mym Math
Aliter 8. (b) Way 4	$\int \frac{1}{M-x} \mathrm{d}x = \int k \mathrm{d}t \left\{ \Rightarrow \int \frac{-1}{x-M} \right\}$			B1 M1 A1
	$-\ln x - M = kt + c$	N .	Modulus not required for 1 st A1. Modulus	
	$\{t = 0, x = 0 \Rightarrow\} -\ln 0 - M = k(0) + c$ $\Rightarrow c = -\ln M \Rightarrow -\ln x - M = kt - \ln M$		not required here!	M1
	then either	or		
	$-kt = \ln x - M - \ln M$	$kt = \ln M - \ln \left x - M \right $		
	$-kt = \ln \left \frac{x - M}{M} \right $	$kt = \ln \left \frac{M}{x - M} \right $		
	As x <	< <i>M</i>		
	$-kt = \ln\left(\frac{M-x}{M}\right)$	$kt = \ln\left(\frac{M}{M-x}\right)$	Understanding of modulus is required	ddM1
	$e^{-kt} = \frac{M-x}{M}$	$e^{kt} = \frac{M}{M-x}$	here!	
	$M \mathrm{e}^{-kt} = M - x$	$(M - x)e^{kt} = M$ $M - x = Me^{-kt}$		A1 * cso
	leading to $x = M - Me^{-kt}$	or $x = M(1 - e^{-kt})$ oe		
	D1. Made as in the existent estates			[6]
	B1: Mark as in the original scheme.M1A1M1: Mark as in the original scheme ignoring the modulus.			
	ddM1: Mark as in the original sche	me AND the candidate must demon	nstrate that they have conv	verted
	$\ln x - M $ to $\ln(M - x)$ in their working.			
		ent on both the previous method ma	rks being awarded.	
Aliter 8. (b)	A1: Mark as in the original scheme. Use of an integrating factor (I.F.)			
Way 5	$\begin{vmatrix} \frac{\mathrm{d}x}{\mathrm{d}t} = k(M - x) \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}t} + kx = kM\\ \mathrm{I.F.} = \mathrm{e}^{kt} \end{vmatrix}$	B1		
	$\frac{\mathrm{d}}{\mathrm{d}t}\left(\mathrm{e}^{kt}x\right) = kM\mathrm{e}^{kt},$			
	$e^{kt}x = Me^{kt} + c$	M1A1		
	$x = M + c \mathrm{e}^{-kt}$			
	$\{t = 0, x = 0 \Longrightarrow\} 0 = M + c e^{-k(0)}$ $\Rightarrow c = -M$	M1		
	$x = M - M e^{-kt}$	ddM1A1		

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u>

Order Code UA035679 Summer 2013

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

www.mymathscloud.com

